1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
//!
//! Weld is a runtime for improving the performance of data-intensive applications. It optimizes
//! across libraries and functions by expressing the core computations in libraries using a small
//! common intermediate representation, similar to CUDA and OpenCL.
//!
//! # Using Weld
//!
//! Weld is a small programming language that supports _parallel loops_ and
//! _builders_, which are declarative objects that specify how to buid results. The parallel loops
//! can be used in conjunction with the builders to build a result in parallel.
//!
//! This crate contains the Weld compiler and runtime, though users only interact with the
//! compiler. Users use Weld by constructing a Weld program (currently as a string), compiling
//! the string into a runnable _module_, and then running the module with in-memory data.
//!
//! Weld JITs code into the current process using LLVM. As a result, Weld users must have a version
//! of LLVM installed on their machine (currently, Weld uses LLVM 6).
//!
//! ## Example
//!
//! The following program shows a minimal Weld program that adds two numbers:
//!
//! ```rust,no_run
//! # extern crate weld;
//! #
//! # use weld::*;
//! #
//! #[repr(C)]
//! struct MyArgs {
//!     a: i32,
//!     b: i32,
//! }
//!
//! let code = "|a: i32, b: i32| a + b";
//! let ref conf = WeldConf::new();
//! let mut module = WeldModule::compile(code, conf).unwrap();
//!
//! // Weld accepts a packed C struct as an argument.
//! let ref args = MyArgs { a: 1, b: 50 };
//! let ref input = WeldValue::new_from_data(args as *const _ as Data);
//!
//! // A context manages memory.
//! let ref mut context = WeldContext::new(conf).unwrap();
//!
//! // Running a Weld module and reading a value out of it is unsafe!
//! unsafe {
//!     // Run the module, which returns a wrapper `WeldValue`.
//!     let result = module.run(context, input).unwrap();
//!     // The data is just a pointer: cast it to the expected type
//!     let data = result.data() as *const i32;
//!
//!     let result = (*data).clone();
//!     assert_eq!(args.a + args.b, result);
//! }
//! ```
//!
//! Users write a Weld program as a string, compile it into a module, and then pass packed
//! arguments into it to run the JITed code. The result is a pointer that represents the output of
//! the Weld program: we can cast that to the appropriate pointer type and read it by
//! dereferencing.
//!
//! ## Modules
//!
//! The `WeldModule` is the main entry point into Weld. Users can compile Weld programs using
//! `WeldModule::compile`, and then run compiled programs using `WeldModule::run`.
//!
//! The module functions can be configured in several ways. This configuration is controlled using
//! the `WeldConf` struct, which is effectively a dictionary of `String` key/value pairs that
//! control how a Weld program is compiled and run.
//!
//! ## Values
//!
//! Since Weld JITs code and implements a custom runtime, data passed in and out of it must be in a
//! specific, C-compatible packed format. The [Weld Github](http://github.com/weld-project/weld)
//! contains a plethora of information on how data should be formatted when passed into Weld, but
//! in short, it is **not** safe to simply pass Rust objects into Weld.
//!
//! `WeldModule` accepts and returns a wrapper struct called `WeldValue`, which wraps an opaque
//! `*const void` that Weld reads depending on the argument and return types of the Weld program.
//! Weld's main `run` function is thus `unsafe`: users need to guarantee that the data passed into
//! Weld is properly formatted!
//!
//! ### Passing Rust Values into Weld
//!
//! Currently, users need to manually munge Rust values into a format that Weld understands, as
//! specified [here](https://github.com/weld-project/weld/blob/master/docs/api.md). Eventually, we
//! may add a module in this crate that contains wrappers for some useful types. The current Rust
//! types can be passed safely into Weld already:
//!
//! * Primitive types such as `i8`, `i16`, and `f32`. These have a 1-1 correspondance with Weld.
//! * Rust structs with `repr(C)`.
//!
//! Notably, `Vec<T>` _cannot_ be passed without adhering to the custom Weld format. Currently,
//! that format is defined as:
//!
//! ```
//! #[repr(C)]
//! struct WeldVec<T> {
//!     ptr: *const T,
//!     len: i64,
//! }
//! ```
//!
//! There is thus a straightforward conversion from `Vec<T>` to a `WeldVec<T>`.
//!
//! The `data` module defines layouts of Weld-compatible types, and also contains some methods for
//! converting Rust values into Weld values.
//!
//! ## Contexts
//!
//! A context manages state such as allocation information. A context is passed into
//! `WeldModule::run` and updated by the compiled Weld program.
//!
//! The `WeldContext` struct wraps a context. Contexts are internally reference counted because
//! values produced by Weld hold references to the context in which they are allocated. The memory
//! backing a `WeldContext` is freed when all references to the context are dropped.
//!
#![cfg_attr(not(test), allow(dead_code))]

#[macro_use]
extern crate lazy_static;

#[macro_use]
extern crate log;

extern crate regex;
extern crate libc;
extern crate env_logger;
extern crate chrono;
extern crate fnv;
extern crate time;
extern crate code_builder;
extern crate uuid;

use self::time::PreciseTime;

use std::error::Error;
use std::default::Default;
use std::ffi::{CString, CStr};
use std::fmt;

use std::rc::Rc;
use std::cell::RefCell;

use uuid::Uuid;

/// A macro for creating a `WeldError` with a message and an unknown error code.
#[macro_export]
macro_rules! weld_err {
    ( $($arg:tt)* ) => ({
        ::std::result::Result::Err($crate::WeldError::new_unknown(format!($($arg)*)))
    })
}


/// A build ID.
///
/// If Weld was compiled in a non-standard manner (i.e., without Cargo), this will be unknown.
pub const BUILD: &'static str = env!("BUILD_ID");

/// Weld version.
///
/// If Weld was compiled in a non-standard manner (i.e., without Cargo), this will be unknown.
pub const VERSION: Option<&'static str> = option_env!("CARGO_PKG_VERSION");

#[macro_use]
mod error;

mod codegen;
mod conf;
mod optimizer;
mod syntax;
mod sir;
mod util;

// Public interfaces.
pub mod ast;
pub mod ffi;
pub mod runtime;
pub mod data;

pub use conf::constants::*;

// Tests.
#[cfg(test)]
mod tests;

use conf::ParsedConf;
use runtime::WeldRuntimeContext;
use util::dump::{DumpCodeFormat, write_code};
use util::stats::CompilationStats;

// Error codes are exposed publicly.
pub use runtime::WeldRuntimeErrno;

/// A wrapper for a C pointer.
pub type Data = *const libc::c_void;

/// A wrapper for a mutable C pointer.
pub type DataMut = *mut libc::c_void;

/// An identifier that uniquely identifies a call to `WeldModule::run`.
pub type RunId = i64;

/// An error when compiling or running a Weld program.
#[derive(Debug,Clone)]
pub struct WeldError {
    message: CString,
    code: WeldRuntimeErrno,
}

/// A `Result` that uses `WeldError`.
pub type WeldResult<T> = Result<T, WeldError>;

/// A context for a Weld program.
///
/// Contexts are internally reference counted, so cloning a context will produce a reference to the
/// same internal object. The reference-counted internal object is protected via a `RefCell` to
/// prevent double-mutable-borrows: this is necessary because contexts may not be passed into
/// multiple `WeldModule::run` calls in parallel, even if they are cloned (since cloned contexts
/// point to the same underlying object).
///
/// Contexts are *not* thread-safe, and thus do not implement `Send+Sync`.
#[derive(Clone,Debug,PartialEq)]
pub struct WeldContext {
    context: Rc<RefCell<WeldRuntimeContext>>,
}

// Public API.
impl WeldContext {
    /// Returns a new `WeldContext` with the given configuration.
    ///
    /// # Errors
    ///
    /// Returns an error if the configuration is malformed.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldConf, WeldContext};
    ///
    /// // Create a new default configuration.
    /// let ref mut conf = WeldConf::new();
    ///
    /// // Set 1KB memory limit, 2 worker threads.
    /// conf.set("weld.memory.limit", "1024");
    /// conf.set("weld.threads", "2");
    ///
    /// // Create a context.
    /// let context = WeldContext::new(conf).unwrap();
    /// ```
    pub fn new(conf: &WeldConf) -> WeldResult<WeldContext> {
        let ref mut conf = ParsedConf::parse(conf)?;
        let threads = conf.threads;
        let mem_limit = conf.memory_limit;

        let run = WeldRuntimeContext::new(threads as i32, mem_limit);
        Ok(WeldContext {
            context: Rc::new(RefCell::new(run))
        })
    }

    /// Returns the memory used by this context.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldConf, WeldContext};
    ///
    /// let context = WeldContext::new(&WeldConf::new()).unwrap();
    /// assert_eq!(context.memory_usage(), 0);
    /// ```
    pub fn memory_usage(&self) -> i64 {
        self.context.borrow().memory_usage()
    }

    /// Returns the memory limit of this context.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldConf, WeldContext};
    ///
    /// let ref mut conf = WeldConf::new();
    ///
    /// // Set 1KB memory limit, 2 worker threads.
    /// conf.set("weld.memory.limit", "1024");
    ///
    /// let context = WeldContext::new(conf).unwrap();
    /// assert_eq!(context.memory_limit(), 1024);
    /// ```
    pub fn memory_limit(&self) -> i64 {
        self.context.borrow().memory_limit()
    }
}

impl WeldError {
    /// Creates a new error with a message and error code.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldError, WeldRuntimeErrno};
    ///
    /// let err = WeldError::new("A new error", WeldRuntimeErrno::Unknown);
    /// ```
    pub fn new<T: Into<Vec<u8>>>(message: T, code: WeldRuntimeErrno) -> WeldError {
        WeldError {
            message: CString::new(message).unwrap(),
            code: code,
        }
    }

    /// Creates a new error with a particular message and an `Unknown` error code.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldError, WeldRuntimeErrno};
    ///
    /// let err = WeldError::new_unknown("A new unknown error");
    /// assert_eq!(err.code(), WeldRuntimeErrno::Unknown);
    /// ```
    pub fn new_unknown<T: Into<Vec<u8>>>(message: T) -> WeldError {
        WeldError {
            message: CString::new(message).unwrap(),
            code: WeldRuntimeErrno::Unknown,
        }
    }

    /// Creates a new error with a particular message indicating success.
    ///
    /// The error returned by this function has a message "Success" and the error code
    /// `WeldRuntimeErrno::Success`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldError, WeldRuntimeErrno};
    ///
    /// let err = WeldError::new_success();
    /// assert_eq!(err.code(), WeldRuntimeErrno::Success);
    /// assert_eq!(err.message().to_str().unwrap(), "Success");
    /// ```
    pub fn new_success() -> WeldError {
        WeldError::new(CString::new("Success").unwrap(), WeldRuntimeErrno::Success)
    }

    /// Returns the error code of this `WeldError`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldError, WeldRuntimeErrno};
    ///
    /// let err = WeldError::new("An out of memory error", WeldRuntimeErrno::OutOfMemory);
    /// assert_eq!(err.code(), WeldRuntimeErrno::OutOfMemory);
    /// ```
    pub fn code(&self) -> WeldRuntimeErrno {
        self.code
    }

    /// Returns the error message of this `WeldError`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{WeldError, WeldRuntimeErrno};
    ///
    /// let err = WeldError::new("Custom error", WeldRuntimeErrno::Unknown);
    /// assert_eq!(err.message().to_str().unwrap(), "Custom error");
    pub fn message(&self) -> &CStr {
        self.message.as_ref()
    }
}

impl Default for WeldError {
    fn default() -> WeldError {
        WeldError {
            message: CString::new("").unwrap(),
            code: WeldRuntimeErrno::Success,
        }
    }
}

// Conversion from a compilation error to an external WeldError.
impl From<error::WeldCompileError> for WeldError {
    fn from(err: error::WeldCompileError) -> WeldError {
        WeldError::new(CString::new(err.description()).unwrap(), WeldRuntimeErrno::CompileError)
    }
}

/// A wrapper for data passed into and out of Weld.
///
/// Values produced by Weld (i.e., as a return value from `WeldModule::run`) hold a reference to
/// the context they are allocated in.
#[derive(Debug,Clone)]
pub struct WeldValue {
    data: Data,
    run: Option<RunId>,
    context: Option<WeldContext>,
}

impl WeldValue {
    /// Creates a new `WeldValue` with a particular data pointer.
    ///
    /// This function is used to wrap data that will be passed into Weld. Data passed into Weld
    /// should be in a standard format that Weld understands: this is usually some kind of packed C
    /// structure with a particular field layout.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{Data, WeldValue};
    ///
    /// let vec = vec![1, 2, 3];
    /// let value = WeldValue::new_from_data(vec.as_ptr() as Data);
    /// ```
    pub fn new_from_data(data: Data) -> WeldValue {
        WeldValue {
            data: data,
            run: None,
            context: None,
        }
    }

    /// Returns the data pointer of this `WeldValue`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::{Data, WeldValue};
    ///
    /// let vec = vec![1, 2, 3];
    /// let value = WeldValue::new_from_data(vec.as_ptr() as Data);
    ///
    /// assert_eq!(vec.as_ptr() as Data, value.data() as Data);
    /// ```
    pub fn data(&self) -> Data {
        self.data
    }

    /// Returns the context of this value.
    ///
    /// This method will return `None` if the value does not have a context (e.g., if it was
    /// initialized using `new_from_data`). If it does have a context, the reference count of the
    /// context is increased -- the context will thus not be dropped until this reference is
    /// dropped.
    ///
    /// # Examples
    ///
    /// Values created using `new_from_data` return `None`:
    ///
    /// ```rust
    /// use weld::{Data, WeldValue};
    ///
    /// let vec = vec![1, 2, 3];
    /// let value = WeldValue::new_from_data(vec.as_ptr() as Data);
    ///
    /// assert!(value.context().is_none());
    /// ```
    ///
    /// Values created by Weld return the context that owns the data:
    ///
    /// ```rust,no_run
    /// use weld::*;
    /// use std::cell::Cell;
    ///
    /// // Wrap in Cell so we can get a raw pointer
    /// let input = Cell::new(1 as i32);
    ///
    /// let ref conf = WeldConf::new();
    /// let mut module = WeldModule::compile("|x: i32| x + 1", conf).unwrap();
    ///
    /// let ref input_value = WeldValue::new_from_data(input.as_ptr() as Data);
    ///
    /// let ref mut context = WeldContext::new(conf).unwrap();
    /// let result = unsafe { module.run(context, input_value).unwrap() };
    ///
    /// assert!(result.context().is_some());
    /// assert_eq!(result.context().as_mut().unwrap(), context);
    /// ```
    pub fn context(&self) -> Option<WeldContext> {
        self.context.clone()
    }

    /// Returns the run ID of this value if it has one.
    ///
    /// A `WeldValue` will only have a run ID if it was _returned_ by a Weld program. That is, a
    /// `WeldValue` that is created using `WeldValue::new_from_data` will always have a `run_id` of
    /// `None`.
    pub fn run_id(&self) -> Option<RunId> {
        Some(0)
    }
}

/// A struct used to configure compilation and the Weld runtime.
#[derive(Debug,Clone)]
pub struct WeldConf {
    dict: fnv::FnvHashMap<String, CString>,
}

impl WeldConf {
    /// Creates a new empty `WeldConf`.
    ///
    /// Weld configurations are unstructured key/value pairs. The configuration is used to modify
    /// how a Weld program is compiled (e.g., setting multi-thread support, configuring
    /// optimization passes, etc.) and how a Weld program is run (e.g., a memory limit, the number
    /// of threads to allocate the run, etc.).
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::WeldConf;
    ///
    /// let conf = WeldConf::new();
    /// ```
    pub fn new() -> WeldConf {
        WeldConf { dict: fnv::FnvHashMap::default() }
    }

    /// Adds a configuration to this `WeldConf`.
    ///
    /// This method does not perform any checks to ensure that the key/value pairs are valid. If
    /// a `WeldConf` contains an invalid configuration option, the `WeldModule` methods that
    /// compile and run modules will fail with an error.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use weld::WeldConf;
    ///
    /// let mut conf = WeldConf::new();
    /// conf.set("weld.memory.limit", "1024");
    ///
    /// // Invalid key/value pairs are also allowed but may raise errors.
    /// conf.set("weld.madeUpConfig", "madeUpValue");
    /// ```
    pub fn set<K: Into<String>, V: Into<Vec<u8>>>(&mut self, key: K, value: V) {
        self.dict.insert(key.into(), CString::new(value).unwrap());
    }

    /// Get the value of the given key, or `None` if it is not set.
    ///
    /// # Examples
    ///
    ///```rust
    /// use weld::WeldConf;
    ///
    /// let mut conf = WeldConf::new();
    /// conf.set("weld.memory.limit", "1024");
    ///
    /// let value = conf.get("weld.memory.limit").unwrap().to_str().unwrap();
    /// assert_eq!(value, "1024");
    ///
    /// let value = conf.get("non-existant key");
    /// assert!(value.is_none());
    /// ```
    pub fn get(&self, key: &str) -> Option<&CString> {
        self.dict.get(key)
    }
}

/// A compiled runnable Weld module.
#[derive(Debug)]
pub struct WeldModule {
    /// A compiled, runnable module.
    llvm_module: codegen::CompiledModule,
    /// The Weld parameter types this modules accepts.
    param_types: Vec<ast::Type>,
    /// The Weld return type of this module.
    return_type: ast::Type,
    /// A unique identifier for a module.
    module_id: Uuid,
}

impl WeldModule {
    /// Creates a compiled `WeldModule` with a Weld program and configuration.
    ///
    /// A compiled module encapsulates JIT'd code in the current process. This function takes a
    /// string reprsentation of Weld code, parses it, and compiles it into machine code. The passed
    /// `WeldConf` can be used to configure how the code is compiled (see `conf.rs` for a list of
    /// compilation options). Each configuration option has a default value, so setting
    /// configuration options is optional.
    ///
    /// # Errors
    ///
    /// * If the provided code does not compile (e.g., due to a syntax error), a compile error is
    /// returned.
    /// * If the provided configuration has an invalid configuration option, a compile
    /// error is returned.
    ///
    /// # Examples
    ///
    /// Compiling a valid program:
    ///
    /// ```rust,no_run
    /// use weld::*;
    ///
    /// let ref conf = WeldConf::new();
    /// let code = "|| 1";
    ///
    /// let mut module = WeldModule::compile(code, conf);
    /// assert!(module.is_ok());
    /// ```
    ///
    /// Invalid programs or configurations will return compile errors:
    ///
    /// ```rust,no_run
    /// # use weld::*;
    /// let ref mut conf = WeldConf::new();
    ///
    /// // Type error in program!
    /// let mut module = WeldModule::compile("|| 1 + f32(1)", conf);
    /// assert!(module.is_err());
    ///
    /// let err = module.unwrap_err();
    /// assert_eq!(err.code(), WeldRuntimeErrno::CompileError);
    ///
    /// conf.set("weld.memory.limit", "invalidLimit");
    /// let mut module = WeldModule::compile("|| 1", conf);
    /// assert!(module.is_err());
    ///
    /// let err = module.unwrap_err();
    /// assert_eq!(err.code(), WeldRuntimeErrno::CompileError);
    /// ```
    pub fn compile<S: AsRef<str>>(code: S, conf: &WeldConf) -> WeldResult<WeldModule> {
        use self::ast::*;

        let e2e_start = PreciseTime::now();
        let mut stats = CompilationStats::new();
        let ref mut conf = ParsedConf::parse(conf)?;
        let code = code.as_ref();

        let uuid = Uuid::new_v4();

        // Configuration.
        debug!("{:?}", conf);

        // Parse the string into a Weld AST.
        let start = PreciseTime::now();
        let program = syntax::parser::parse_program(code)?;
        let end = PreciseTime::now();
        stats.weld_times.push(("Parsing".to_string(), start.to(end)));

        // Substitute macros in the parsed program.
        let mut expr = syntax::macro_processor::process_program(&program)?;
        debug!("After macro substitution:\n{}\n", expr.pretty_print());

        let unoptimized_code = expr.pretty_print();
        info!("Compiling module with UUID={}, code\n{}",
              uuid.to_hyphenated(),
              unoptimized_code);

        // Dump the generated Weld program before applying any analyses.
        nonfatal!(write_code(&unoptimized_code, DumpCodeFormat::Weld, &conf.dump_code));

        // Uniquify symbol names.
        let start = PreciseTime::now();
        expr.uniquify()?;
        let end = PreciseTime::now();
        let mut uniquify_dur = start.to(end);

        // Infer types of expressions.
        let start = PreciseTime::now();
        expr.infer_types()?;
        let end = PreciseTime::now();
        stats.weld_times.push(("Type Inference".to_string(), start.to(end)));
        debug!("After type inference:\n{}\n", expr.pretty_print());

        // Apply optimization passes.
        optimizer::apply_passes(&mut expr,
                                &conf.optimization_passes,
                                &mut stats,
                                conf.enable_experimental_passes)?;

        // Uniquify again.
        let start = PreciseTime::now();
        expr.uniquify()?;
        let end = PreciseTime::now();
        uniquify_dur = uniquify_dur + start.to(end);
        stats.weld_times.push(("Uniquify outside Passes".to_string(), uniquify_dur));
        debug!("Optimized Weld program:\n{}\n", expr.pretty_print());

        // Convert the AST to SIR.
        let start = PreciseTime::now();
        let mut sir_prog = sir::ast_to_sir(&expr)?;
        let end = PreciseTime::now();
        stats.weld_times.push(("AST to SIR".to_string(), start.to(end)));
        debug!("SIR program:\n{}\n", &sir_prog);

        // If enabled, apply SIR optimizations.
        let start = PreciseTime::now();
        if conf.enable_sir_opt {
            use sir::optimizations;
            info!("Applying SIR optimizations");
            optimizations::fold_constants::fold_constants(&mut sir_prog)?;
        }
        let end = PreciseTime::now();
        debug!("Optimized SIR program:\n{}\n", &sir_prog);
        stats.weld_times.push(("SIR Optimization".to_string(), start.to(end)));

        nonfatal!(write_code(expr.pretty_print(), DumpCodeFormat::WeldOpt, &conf.dump_code));
        nonfatal!(write_code(sir_prog.to_string(), DumpCodeFormat::SIR, &conf.dump_code));

        // Generate code.
        let compiled_module = codegen::compile_program(&sir_prog, conf, &mut stats)?;
        debug!("\n{}\n", stats.pretty_print());

        let (param_types, return_type) = if let Type::Function(ref param_tys, ref return_ty) = expr.ty {
            (param_tys.clone(), *return_ty.clone())
        } else {
            unreachable!()
        };

        let end = PreciseTime::now();
        let duration = e2e_start.to(end);
        let us = duration.num_microseconds().unwrap_or(std::i64::MAX);
        let e2e_ms: f64 = us as f64 / 1000.0;
        info!("Compiled module with UUID={} in {} ms",
              uuid.to_hyphenated(),
              e2e_ms);

        Ok(WeldModule {
            llvm_module: compiled_module,
            param_types: param_types,
            return_type: return_type,
            module_id: uuid,
        })
    }

    /// Run this `WeldModule` with a context and argument.
    ///
    /// This is the entry point for running a Weld program. The argument is a `WeldValue` that
    /// encapsulates a pointer to the argument. See the section below about how this argument
    /// should be structured.
    ///
    /// The context captures _state_: in particular, it holds the memory allocated by a `run`.
    /// Contexts can be reused across runs and modules. Contexts are primarily useful for passing
    /// mutable state---builders---in and out of Weld and updating them in place. For example, a
    /// program can compute some partial result, return a builder, and then pass the builder as a
    /// `WeldValue` back into `run` _with the same context_ to continue updating that builder.
    ///
    /// Contexts are not thread-safe---this is enforced in Rust by having this function take a
    /// mutable reference to a context. If a context is cloned, this constraint is maintained via
    /// _interior mutability_: contexts internally hold a `RefCell` that is mutably borrowed by
    /// this function, so a panic will be thrown if multiple callers try to `run` a module with the
    /// same context.
    ///
    /// # Structuring Arguments
    ///
    /// This function takes a `WeldValue` initialized using `WeldValue::new_from_data` or another Weld
    /// program. The value must encapsulate a valid pointer in a "Weld-compatible" format as
    /// specified by the [specification](https://github.com/weld-project/weld/blob/master/docs/api.md).
    /// This method is, as a result, `unsafe` because passing invalid data into a Weld program will
    /// cause undefined behavior.
    ///
    /// Note that most Rust values cannot be passed into Weld directly. For example, it is *not*
    /// safe to simply pass a raw pointer to a `Vec<T>` into Weld directly.
    ///
    /// # Errors
    ///
    /// This method may return any of the errors specified in `WeldRuntimeErrno`, if a runtime
    /// error occurs during the execution of the program. Currently, the implementation panics if a
    /// runtime error is thrown.
    ///
    /// # Panics
    ///
    /// The current implementation panics whenever the runtime throws an error. This function will
    /// also panic if the same context is passed to `run` at once (this is possible if, e.g., if a
    /// context is cloned).
    ///
    /// # Examples
    ///
    /// ```rust,no_run
    /// use weld::*;
    /// use std::cell::Cell;
    ///
    /// // Wrap in Cell so we can get a raw pointer
    /// let input = Cell::new(1 as i32);
    /// let ref conf = WeldConf::new();
    ///
    /// // Program that adds one to an i32.
    /// let mut module = WeldModule::compile("|x: i32| x + 1", conf).unwrap();
    /// let ref input_value = WeldValue::new_from_data(input.as_ptr() as Data);
    /// let ref mut context = WeldContext::new(conf).unwrap();
    ///
    /// // Running is unsafe, since we're outside of Rust in JIT'd code, operating over
    /// // raw pointers.
    /// let result = unsafe { module.run(context, input_value).unwrap() };
    ///
    /// assert!(result.context().is_some());
    ///
    /// // Unsafe to read raw pointers!
    /// unsafe {
    ///     // The data is just a raw pointer: cast it to the expected type.
    ///     let data = result.data() as *const i32;
    ///
    ///     let result = (*data).clone();
    ///     assert_eq!(input.get() + 1, result);
    /// }
    /// ```
    pub unsafe fn run(&self,
                      context: &mut WeldContext,
                      arg: &WeldValue) -> WeldResult<WeldValue> {

        let start = PreciseTime::now();
        let nworkers = context.context.borrow().threads();
        let mem_limit = context.context.borrow().memory_limit();

         // Borrow the inner context mutably since we pass a mutable pointer to it to the compiled
        // module. This enforces the single-mutable-borrow rule manually for contexts.
        let mut context_borrowed = context.context.borrow_mut();

        let (raw, result) = {
            // This is the required input format of data passed into a compiled module.
            let input = Box::new(codegen::WeldInputArgs {
                input: arg.data as i64,
                nworkers: nworkers,
                mem_limit: mem_limit,
                run: context.context.as_ptr() as i64,
            });
            let ptr = Box::into_raw(input) as i64;

            // Runs the Weld program.
            let raw = self.llvm_module.run(ptr) as *const codegen::WeldOutputArgs;
            let result = (*raw).clone();

            // Free the boxed input.
            let _ = Box::from_raw(ptr as *mut codegen::WeldInputArgs);

            (raw, result)
        };

        let value = WeldValue {
            data: result.output as Data,
            run: None,
            context: Some(context.clone()),
        };

        let end = PreciseTime::now();
        let duration = start.to(end);
        let us = duration.num_microseconds().unwrap_or(std::i64::MAX);
        let ms: f64 = us as f64 / 1000.0;
        debug!("Ran module UUID={} in {} ms",
              self.module_id.to_hyphenated(), ms);

        // Check whether the run was successful -- if not, free the data in the module, andn return
        // an error indicating what went wrong.
        if result.errno != WeldRuntimeErrno::Success {
            // The WeldValue is automatically dropped and freed here.
            let message = CString::new(format!("Weld program failed with error {:?}", result.errno)).unwrap();
            Err(WeldError::new(message, result.errno))
        } else {
            // Free the WeldOutputArgs struct.
            context_borrowed.free(raw as *mut u8);
            Ok(value)
        }
    }

    /// Returns the Weld arguments types of this `WeldModule`.
    pub fn param_types(&self) -> Vec<ast::Type> {
        self.param_types.clone()
    }

    /// Returns the Weld return type of this `WeldModule`.
    pub fn return_type(&self) -> ast::Type {
        self.return_type.clone()
    }
}

/// A logging level for the compiler.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd)]
#[repr(u64)]
pub enum WeldLogLevel {
    Off = 0,
    Error,
    Warn,
    Info,
    Debug,
    Trace,
}

impl fmt::Display for WeldLogLevel {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}

impl From<WeldLogLevel> for log::LogLevelFilter {
    fn from(level: WeldLogLevel) -> log::LogLevelFilter {
        match level {
            WeldLogLevel::Error => log::LogLevelFilter::Error,
            WeldLogLevel::Warn => log::LogLevelFilter::Warn,
            WeldLogLevel::Info => log::LogLevelFilter::Info,
            WeldLogLevel::Debug => log::LogLevelFilter::Debug,
            WeldLogLevel::Trace => log::LogLevelFilter::Trace,
            _ => log::LogLevelFilter::Off
        }
    }
}

impl From<log::LogLevelFilter> for WeldLogLevel {
    fn from(level: log::LogLevelFilter) -> WeldLogLevel {
        match level {
            log::LogLevelFilter::Error => WeldLogLevel::Error,
            log::LogLevelFilter::Warn => WeldLogLevel::Warn,
            log::LogLevelFilter::Info => WeldLogLevel::Info,
            log::LogLevelFilter::Debug => WeldLogLevel::Debug,
            log::LogLevelFilter::Trace => WeldLogLevel::Trace,
            _ => WeldLogLevel::Off
        }
    }
}

/// Load a dynamic library that a Weld program can access.
///
/// The dynamic library is a C dynamic library identified by its filename.
pub fn load_linked_library<S: AsRef<str>>(filename: S) -> WeldResult<()> {
    codegen::load_library(filename.as_ref()).map_err(|e| WeldError::from(e))
}

/// Enables logging to stderr in Weld with the given log level.
///
/// This function is ignored if it has already been called once, or if some other code in the
/// process has initialized logging using Rust's `log` crate.
pub fn set_log_level(level: WeldLogLevel) {
    use util::colors::*;
    use util::colors::Color::*;

    let filter: log::LogLevelFilter = level.into();
    let format = |rec: &log::LogRecord| {
        let prefix = match rec.level() {
            log::LogLevel::Error => format_color(Red, "error"),
            log::LogLevel::Warn => format_color(Yellow, "warn"),
            log::LogLevel::Info => format_color(Yellow, "info"),
            log::LogLevel::Debug => format_color(Green, "debug"),
            log::LogLevel::Trace => format_color(Green, "trace"),
        };
        let date = chrono::Local::now().format("%T%.3f");
        format!("[{}] {}: {}", prefix, date, rec.args())
    };

    let mut builder = env_logger::LogBuilder::new();
    builder.format(format);
    builder.filter(None, filter);
    builder.init().unwrap_or(());

    info!("Weld Version {} (Build {})", VERSION.unwrap_or("unknown"), BUILD);
}